Association Québécoise de Hockey Simulé - Farmers 

Farmers

GP: 30 | W: 15 | L: 12 | OTL: 3 | P: 33
GF: 126 | GA: 109 | PP%: 29.17% | PK%: 77.22%
GM : Nicolas Bellerose | Morale : 90 | Team Overall : 58
Next Games #475 vs Bandits
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Alex Newhook (R)X100.00624588835770996071566457688273090650
2Rasmus Kupari (R)X100.00734590797051805485555472668370090650
3Axel Jonsson-Fjallby (R)X100.00654591816252605630536071678572090610
4Simon Holmstrom (R)X100.00504595777256605230456060688169090580
5Givani Smith (R)X100.00896340757750435030475255508572090570
6Egor Afanasyev (R)X100.00724592747954404730405455508270090550
7Nicholas Abruzzese (R)X100.00504595795550404930485055508370090540
8Jonathan Gruden (R)X100.00504595795250404530405070508269090540
9Matthew Knies (R)X100.00504592747566404730445055508070090540
10Victor Soderstrom (R)X100.00584573855167405730655066678272090620
11Tyler Tucker (R)X100.00905462786561405230495562668372090620
12Jacob Bernard-Docker (R)X100.00724880775667404730445071508272090610
13Henry Thrun (R)X100.00504595786083404930485065508276090610
14Drew Helleson (R)X100.00504592776257404830405662508270090580
15Lucas Johansen (R)X100.00504595795353404530405062508573090570
16Dennis Cholowski (R)X100.00504595747053404530405055508573090570
17Mattias Norlinder (R)X100.00504595785350404530405055508370090560
Scratches
1Samuel Walker (R)X100.00504595795253404930445456508371090540
2Josiah Slavin (R)X100.00504595776750404530405055508572090530
3Sampo Ranta (R)X100.00574590766750404530405055508269090530
4Hugh McGing (R)X100.00504595794650404530405059508471090530
5Arttu Ruotsalainen (R)X100.00504595775450404530405055508673090520
6Brayden Tracey (R)X100.00504595795550404530405055508269090520
TEAM AVERAGE100.0058468878615646493445536054837109057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Elvis Merzlikins100.0070648083707270727070708881090640
2Samuel Ersson (R)100.0073507181767073707670708372090630
Scratches
1Daniil Tarasov (R)100.0070527588707070707070708373090630
2Yaroslav Askarov (R)100.0070506882707070707070708067090610
TEAM AVERAGE100.007154748472717171727070847309063
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Dave Tippett65656565967248CAN624500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Victor SoderstromFarmers (REG)D28729368155553211253566.25%3767924.2655102576000257010.00%01035001.0601100331
2Axel Jonsson-FjallbyFarmers (REG)LW2313152811402936103316512.62%942818.6234719450000100144.00%251915001.3112000102
3Alex NewhookFarmers (REG)C23159243003132102295214.71%1143318.863259320003406063.79%3592421001.1103000412
4Rasmus KupariFarmers (REG)C18101121100213563253915.87%529116.173366140001173168.98%3031417001.4412000312
5Simon HolmstromFarmers (REG)RW2313821640262276245417.11%1245719.912241256202292230.77%262113000.9200000232
6Givani SmithFarmers (REG)LW301091957115572259123116.95%1244014.68202426000090142.42%331615000.8601012031
7Nicholas AbruzzeseFarmers (REG)RW3071118055161552113313.46%2245615.21235743000000042.86%211711000.7900001002
8Henry ThrunFarmers (REG)D282121450014234016225.00%3358320.83112863011157000.00%11124000.4800000000
9Egor AfanasyevFarmers (REG)LW305813-160342537203313.51%1445115.0500006000050050.00%401912000.5800000010
10Jacob Bernard-DockerFarmers (REG)D2801111512037283516140.00%2553419.07022450000044000.00%0228000.4100000001
11Dakota JoshuaRegina PatsRW855107275211439102312.82%217221.591016190112150047.98%173175001.1611100101
12Drew HellesonFarmers (REG)D2725734015211971510.53%2046717.30101434011025000.00%0416000.3000000010
13Jonathan GrudenFarmers (REG)C2134710015223811327.89%1026912.8400017000030039.33%178412000.5200000010
14Matthew KniesFarmers (REG)LW16437-56017112591816.00%221713.6100001000000027.27%1176000.6400000101
15Tyler TuckerFarmers (REG)D130551120301118580.00%927120.91011232000020000.00%036000.3700000001
16Lucas JohansenFarmers (REG)D25123-77591816976.25%1634213.6900003000111000.00%0313000.1800001000
17Teddy BluegerRegina PatsLW31231408313397.69%46822.9800026000150073.91%2301000.8700000000
18Mattias NorlinderFarmers (REG)D301014003692111.11%32167.220000120000300100.00%215000.0900000000
19Dennis CholowskiFarmers (REG)D30011-4004185520.00%1039513.170000100000700100.00%1316000.0500000000
Team Total or Average43499150249341873544239486129851411.50%256717716.542323461095442351334711656.52%1196195271000.69310214151416
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Elvis MerzlikinsFarmers (REG)30151230.8733.53180421106836436300.61513300000
2Samuel ErssonFarmers (REG)10001.0000.001700063000.0000030000
Team Total or Average31151230.8743.49182121106842439300.615133030000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alex NewhookFarmers (REG)C222001-01-28Yes190 Lbs5 ft10NoNoNo2RFAPro & Farm1,500,000$0$0$No
Arttu RuotsalainenFarmers (REG)LW251997-10-29Yes187 Lbs5 ft9NoNoNo3RFAPro & Farm800,000$0$0$No
Axel Jonsson-FjallbyFarmers (REG)LW251998-02-10Yes189 Lbs6 ft1NoNoNo2RFAPro & Farm1,000,000$0$0$No
Brayden TraceyFarmers (REG)LW222001-05-28Yes177 Lbs6 ft0NoNoNo2RFAPro & Farm700,000$0$0$No
Daniil TarasovFarmers (REG)G241999-03-27Yes196 Lbs6 ft5NoNoNo3RFAPro & Farm700,000$0$0$No
Dennis CholowskiFarmers (REG)D251998-02-15Yes210 Lbs6 ft2NoNoNo4RFAPro & Farm750,000$0$0$No
Drew HellesonFarmers (REG)D222001-03-26Yes190 Lbs6 ft3NoNoNo4RFAPro & Farm775,000$0$0$No
Egor AfanasyevFarmers (REG)LW222001-01-23Yes211 Lbs6 ft4NoNoNo4RFAPro & Farm775,000$0$0$No
Elvis MerzlikinsFarmers (REG)G291994-04-13No183 Lbs6 ft3NoNoNo1UFAPro & Farm3,500,000$0$0$No
Givani SmithFarmers (REG)LW251998-02-27Yes214 Lbs6 ft2NoNoNo1RFAPro & Farm700,000$0$0$No
Henry ThrunFarmers (REG)D222001-03-12Yes190 Lbs6 ft2NoNoNo4RFAPro & Farm850,000$0$0$No
Hugh McGingFarmers (REG)LW251998-07-11Yes176 Lbs5 ft8NoNoNo4RFAPro & Farm775,000$0$0$No
Jacob Bernard-DockerFarmers (REG)D232000-06-30Yes190 Lbs6 ft0NoNoNo3RFAPro & Farm700,000$0$0$No
Jonathan GrudenFarmers (REG)C232000-05-04Yes172 Lbs6 ft0NoNoNo4RFAPro & Farm775,000$0$0$No
Josiah SlavinFarmers (REG)LW241998-12-31Yes189 Lbs6 ft3NoNoNo2RFAPro & Farm700,000$0$0$No
Lucas JohansenFarmers (REG)D251997-11-16Yes176 Lbs6 ft2NoNoNo2RFAPro & Farm700,000$0$0$No
Matthew KniesFarmers (REG)LW202002-10-17Yes210 Lbs6 ft2NoNoNo4RFAPro & Farm900,000$0$0$No
Mattias NorlinderFarmers (REG)D232000-04-12Yes185 Lbs6 ft0NoNoNo2RFAPro & Farm700,000$0$0$No
Nicholas AbruzzeseFarmers (REG)RW241999-06-04Yes183 Lbs5 ft11NoNoNo2RFAPro & Farm1,000,000$0$0$No
Rasmus KupariFarmers (REG)C232000-03-15Yes200 Lbs6 ft2NoNoNo3RFAPro & Farm700,000$0$0$No
Sampo RantaFarmers (REG)RW232000-05-31Yes195 Lbs6 ft2NoNoNo2RFAPro & Farm900,000$0$0$No
Samuel ErssonFarmers (REG)G231999-10-20Yes176 Lbs6 ft2NoNoNo4RFAPro & Farm775,000$0$0$No
Samuel WalkerFarmers (REG)C241999-06-07Yes180 Lbs5 ft10NoNoNo4RFAPro & Farm775,000$0$0$No
Simon HolmstromFarmers (REG)RW222001-05-24Yes205 Lbs6 ft2NoNoNo4RFAPro & Farm900,000$0$0$No
Tyler TuckerFarmers (REG)D232000-03-01Yes204 Lbs6 ft1NoNoNo4RFAPro & Farm775,000$0$0$No
Victor SoderstromFarmers (REG)D222001-02-26Yes184 Lbs5 ft11NoNoNo3RFAPro & Farm800,000$0$0$No
Yaroslav AskarovFarmers (REG)G212002-06-16Yes178 Lbs6 ft3NoNoNo4RFAPro & Farm1,100,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2723.37190 Lbs6 ft13.00926,852$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Axel Jonsson-FjallbyAlex NewhookSimon Holmstrom35122
2Givani SmithRasmus KupariNicholas Abruzzese30122
3Egor AfanasyevJonathan GrudenMatthew Knies25122
4Matthew KniesAlex NewhookRasmus Kupari10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler TuckerVictor Soderstrom35122
2Henry ThrunJacob Bernard-Docker30122
3Drew HellesonDennis Cholowski25122
4Lucas JohansenMattias Norlinder10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Axel Jonsson-FjallbyAlex NewhookSimon Holmstrom55122
2Givani SmithRasmus KupariNicholas Abruzzese45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler TuckerVictor Soderstrom55122
2Henry ThrunJacob Bernard-Docker45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Alex NewhookRasmus Kupari55122
2Axel Jonsson-FjallbySimon Holmstrom45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler TuckerVictor Soderstrom55122
2Henry ThrunJacob Bernard-Docker45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Alex Newhook55122Tyler TuckerVictor Soderstrom55122
2Rasmus Kupari45122Henry ThrunJacob Bernard-Docker45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Alex NewhookRasmus Kupari55122
2Axel Jonsson-FjallbySimon Holmstrom45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler TuckerVictor Soderstrom55122
2Henry ThrunJacob Bernard-Docker45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Axel Jonsson-FjallbyAlex NewhookSimon HolmstromTyler TuckerVictor Soderstrom
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Axel Jonsson-FjallbyAlex NewhookSimon HolmstromTyler TuckerVictor Soderstrom
Extra Forwards
Normal PowerPlayPenalty Kill
Egor Afanasyev, Jonathan Gruden, Givani SmithEgor Afanasyev, Jonathan GrudenGivani Smith
Extra Defensemen
Normal PowerPlayPenalty Kill
Drew Helleson, Dennis Cholowski, Lucas JohansenDrew HellesonDennis Cholowski, Lucas Johansen
Penalty Shots
Alex Newhook, Rasmus Kupari, Axel Jonsson-Fjallby, Simon Holmstrom, Givani Smith
Goalie
#1 : Elvis Merzlikins, #2 : Samuel Ersson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracudas11000000303110000003030000000000021.00034701174956631211364402241032146233.33%10100.00%034758659.22%27656049.29%29348460.54%636379672254515258
2Grizzlies2010100045-1100010003211010000013-220.500459001749566572113644022446176403266.67%3166.67%034758659.22%27656049.29%29348460.54%636379672254515258
3Hunters11000000615000000000001100000061521.0006915001749566392113644022418829156233.33%20100.00%034758659.22%27656049.29%29348460.54%636379672254515258
4Husky11000000532000000000001100000053221.000571200174956632211364402242556234125.00%3166.67%034758659.22%27656049.29%29348460.54%636379672254515258
5Marlies210010001156100010005411100000061541.0001119300017495667521136440224591817363133.33%6183.33%034758659.22%27656049.29%29348460.54%636379672254515258
6Marmots2000000268-21000000123-11000000145-120.500610160017495667321136440224622416477228.57%8187.50%034758659.22%27656049.29%29348460.54%636379672254515258
7Outlaws20200000911-21010000056-11010000045-100.0009142300174956660211364402247121142110440.00%7271.43%034758659.22%27656049.29%29348460.54%636379672254515258
8Predateurs1010000034-11010000034-10000000000000.00034700174956641211364402244118220400.00%10100.00%034758659.22%27656049.29%29348460.54%636379672254515258
9Raptors11000000422110000004220000000000021.00047110017495663021136440224155628200.00%3166.67%134758659.22%27656049.29%29348460.54%636379672254515258
10Rockets2020000059-41010000045-11010000014-300.00057120017495666721136440224721884710220.00%40100.00%034758659.22%27656049.29%29348460.54%636379672254515258
11Scorpions2110000011650000000000021100000116520.5001119300017495667121136440224532329485360.00%7271.43%034758659.22%27656049.29%29348460.54%636379672254515258
12Smirnoff Ice1010000035-2000000000001010000035-200.00036900174956621211364402242712852150.00%4250.00%034758659.22%27656049.29%29348460.54%636379672254515258
13Snowbirds11000000651000000000001100000065121.000671300174956634211364402243894195120.00%220.00%034758659.22%27656049.29%29348460.54%636379672254515258
14Spartans210000011183110000008441000000134-130.750111627001749566692113644022458298403133.33%4250.00%034758659.22%27656049.29%29348460.54%636379672254515258
15Supreme210010001174100010005411100000063341.00011182900174956677211364402245522631400.00%30100.00%034758659.22%27656049.29%29348460.54%636379672254515258
16TigersCats20100010910-120100010910-10000000000020.500912210017495666521136440224773443514125.00%9277.78%134758659.22%27656049.29%29348460.54%636379672254515258
Total301112030131261091715460301163576157600002635211330.55012619932501174956698821136440224842309238580962829.17%791877.22%334758659.22%27656049.29%29348460.54%636379672254515258
18Twins220000001376110000008441100000053241.00013233600174956668211364402244110184312541.67%4175.00%134758659.22%27656049.29%29348460.54%636379672254515258
19Warriors30300000613-72020000049-51010000024-200.00061218001749566782113644022474331652600.00%80100.00%034758659.22%27656049.29%29348460.54%636379672254515258
_Since Last GM Reset301112030131261091715460301163576157600002635211330.55012619932501174956698821136440224842309238580962829.17%791877.22%334758659.22%27656049.29%29348460.54%636379672254515258
_Vs Conference1638020125559-4804020112733-68340000128262140.438558714200174956650721136440224460169149316451226.67%47882.98%134758659.22%27656049.29%29348460.54%636379672254515258
_Vs Division1418020124455-11804020112733-6614000011722-5100.35744711150017495664362113644022441715611427835925.71%42783.33%134758659.22%27656049.29%29348460.54%636379672254515258

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3033W212619932598884230923858001
All Games
GPWLOTWOTL SOWSOLGFGA
3011123013126109
Home Games
GPWLOTWOTL SOWSOLGFGA
154630116357
Visitor Games
GPWLOTWOTL SOWSOLGFGA
157600026352
Last 10 Games
WLOTWOTL SOWSOL
531001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
962829.17%791877.22%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
211364402241749566
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
34758659.22%27656049.29%29348460.54%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
636379672254515258


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2024-04-0714Warriors4Farmers3LBoxScore
3 - 2024-04-0831Farmers3Smirnoff Ice5LBoxScore
5 - 2024-04-1046Farmers2Warriors4LBoxScore
6 - 2024-04-1157Farmers9Scorpions3WBoxScore
7 - 2024-04-1262Grizzlies2Farmers3WXBoxScore
9 - 2024-04-1485Marmots3Farmers2LXXBoxScore
10 - 2024-04-15100Farmers1Rockets4LBoxScore
12 - 2024-04-17117Rockets5Farmers4LBoxScore
13 - 2024-04-18138TigersCats7Farmers8WXXBoxScore
14 - 2024-04-19146Farmers1Grizzlies3LBoxScore
16 - 2024-04-21164Farmers4Marmots5LXXBoxScore
17 - 2024-04-22178Twins4Farmers8WBoxScore
19 - 2024-04-24194Farmers6Marlies1WBoxScore
20 - 2024-04-25210Marlies4Farmers5WXBoxScore
22 - 2024-04-27230Raptors2Farmers4WBoxScore
23 - 2024-04-28244Farmers6Supreme3WBoxScore
24 - 2024-04-29258Farmers4Outlaws5LBoxScore
26 - 2024-05-01272Outlaws6Farmers5LBoxScore
27 - 2024-05-02288Predateurs4Farmers3LBoxScore
29 - 2024-05-04306Farmers5Husky3WBoxScore
30 - 2024-05-05319Warriors5Farmers1LBoxScore
32 - 2024-05-07339Farmers6Hunters1WBoxScore
33 - 2024-05-08349Farmers6Snowbirds5WBoxScore
34 - 2024-05-09364Spartans4Farmers8WBoxScore
36 - 2024-05-11382Farmers3Spartans4LXXBoxScore
37 - 2024-05-12393TigersCats3Farmers1LBoxScore
39 - 2024-05-14411Farmers2Scorpions3LBoxScore
40 - 2024-05-15425Supreme4Farmers5WXBoxScore
42 - 2024-05-17442Farmers5Twins3WBoxScore
43 - 2024-05-18456Barracudas0Farmers3WBoxScore
45 - 2024-05-20475Bandits-Farmers-
46 - 2024-05-21491Farmers-Saguenéens-
47 - 2024-05-22505Husky-Farmers-
49 - 2024-05-24520Farmers-Warriors-
50 - 2024-05-25535Farmers-Thugs-
51 - 2024-05-26548Vandals-Farmers-
53 - 2024-05-28567Thugs-Farmers-
54 - 2024-05-29582Farmers-Raptors-
56 - 2024-05-31597Farmers-Vandals-
58 - 2024-06-02612Igloos-Farmers-
59 - 2024-06-03629Scorpions-Farmers-
61 - 2024-06-05642Farmers-Marmots-
62 - 2024-06-06658Farmers-Grizzlies-
63 - 2024-06-07676Bayou-Farmers-
65 - 2024-06-09690Farmers-Chiwawa-
66 - 2024-06-10704Saguenéens-Farmers-
67 - 2024-06-11717Farmers-Xpress-
69 - 2024-06-13737Chiwawa-Farmers-
70 - 2024-06-14753Farmers-Predateurs-
71 - 2024-06-15766Rockets-Farmers-
73 - 2024-06-17785Snowbirds-Farmers-
74 - 2024-06-18801Farmers-Rockets-
75 - 2024-06-19814Vipers-Farmers-
76 - 2024-06-20829Farmers-CoolFm-
78 - 2024-06-22846Smirnoff Ice-Farmers-
79 - 2024-06-23864Farmers-Vipers-
80 - 2024-06-24874Farmers-Marlies-
82 - 2024-06-26889Farmers-Bayou-
83 - 2024-06-27899Goons-Farmers-
85 - 2024-06-29922CoolFm-Farmers-
87 - 2024-07-01940Hunters-Farmers-
89 - 2024-07-03965Marmots-Farmers-
Trade Deadline --- Trades can’t be done after this day is simulated!
90 - 2024-07-04971Farmers-Igloos-
91 - 2024-07-05987Farmers-Goons-
93 - 2024-07-071001Marlies-Farmers-
94 - 2024-07-081014Farmers-Wolves-
96 - 2024-07-101034Wolves-Farmers-
98 - 2024-07-121054Farmers-Smirnoff Ice-
99 - 2024-07-131061Twins-Farmers-
101 - 2024-07-151087Xpress-Farmers-
104 - 2024-07-181102Farmers-Bandits-
106 - 2024-07-201122Grizzlies-Farmers-
107 - 2024-07-211134Farmers-Barracudas-
108 - 2024-07-221142Farmers-TigersCats-
110 - 2024-07-241154Farmers-TigersCats-
112 - 2024-07-261176Smirnoff Ice-Farmers-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance29,85914,982
Attendance PCT99.53%99.88%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
23 2989 - 99.65% 101,584$1,523,754$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,187,876$ 2,502,500$ 2,502,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 990,707$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,336,423$ 69 26,571$ 1,833,399$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
4582471602584337249884125602242172118544122100034216513134123337541878158712211819265980093091168229873477912602607729.62%2315974.46%6843169149.85%849165551.30%726135253.70%1895124618286531266628
4682254106505263315-5241102104402136158-2241152002103127157-30722634887513450881196206849169286631227878281210692323615.52%2837872.44%5691141448.87%714149547.76%608129946.81%2169157416645971124547
473011120301312610917154603011635761576000026352113312619932501174956698821136440224842309238580962829.17%791877.22%334758659.22%27656049.29%29348460.54%636379672254515258
Total Regular Season194836901110912726673539739330965537133338974436024473553401522872612281954410154259293315715150219862179123541818251829290958814123.98%59315573.86%141881369150.96%1839371049.57%1627313551.90%470032004165150529061434
Playoff
451156000003733463300000211745230000016160103768105018141502936495134028179121144391128.21%38489.47%110321448.13%10420949.76%9218749.20%2101313068314269
Total Playoff1156000003733463300000211745230000016160103768105018141502936495134028179121144391128.21%38489.47%110321448.13%10420949.76%9218749.20%2101313068314269