Association Québécoise de Hockey Simulé - Grizzlies 

Grizzlies

GP: 47 | W: 25 | L: 20 | OTL: 2 | P: 52
GF: 130 | GA: 142 | PP%: 21.43% | PK%: 73.38%
GM : Jonathan Mattson | Morale : 90 | Team Overall : 56
Next Games #748 vs Rockets
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Lias AnderssonX100.00724579796053404930445455828371090550
2MacKenzie MacEachernX100.00674590786650404930485055508875090550
3Patrik BerglundX100.00504595758350404530405055509080090540
4J.C. Beaudin (R)X100.00504595766550404530405055508269090530
5Gemel SmithX100.00504888756350404730445055508875090530
6Jakob Forsbacka-KarlssonX100.00504595835950404530405055508271090530
7Ryan Kuffner (R)X100.00504595776450404530405055508270090530
8Nikita GusevX100.00504595834150404530405055508879090520
9Alex BiegaX100.00514595765555404530405055509482090570
10Egor YakovlevX100.00504595835650404530405055508777090570
11Jake CheliosX100.00504595785750404530405055508778090570
12Joshua Jacobs (R)X100.00504595766550404530405055508475090570
Scratches
TEAM AVERAGE100.0053459378615140463041505553867509055
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jean-Francois Berube100.0070506981707070707070709978090630
2Anders Lindback100.0070404093656565656565659082090590
Scratches
TEAM AVERAGE100.007045558768686868686868958009061
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Claude Julien89747573967248CAN6441,500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Gemel SmithGrizzlies (EDM)C3210717240173358162717.24%655317.303691268000014140.63%411910010.6102000433
2Patrik BerglundGrizzlies (EDM)LW427916-1000171861214611.48%1466815.911348440001183342.86%70139000.4812000615
3Ryan KuffnerGrizzlies (EDM)RW479413-1140121469233913.04%1263113.445279480001193151.11%4588000.4113000563
4MacKenzie MacEachernGrizzlies (EDM)LW103710400115428317.14%516616.671233151011110137.50%1696001.2000000210
5Mason GeertsenEdmonton OilersD213432013061016.67%64522.971011201112000.00%012001.7400000001
6Jake CheliosGrizzlies (EDM)D47033-8552913310.00%1161113.01000020000000100.00%1112000.1013100042
7J.C. BeaudinGrizzlies (EDM)C7112-5005862216.67%29814.0201100000000035.14%3721000.4100000000
8Niklas HjalmarssonEdmonton OilersD7011-400804330.00%311416.330000200005000.00%006000.1701000000
9Justin BaileyEdmonton OilersRW3011-100323040.00%23311.12011020000200100.00%501000.6000000000
10Jakob Forsbacka-KarlssonGrizzlies (EDM)C4000-120054230.00%34310.8800000000000053.73%6701000.0000000100
11Egor YakovlevGrizzlies (EDM)D13000-300389330.00%317713.670000100001000.00%015000.0011000010
12Joshua JacobsGrizzlies (EDM)D47000-122010187470.00%2375716.12000125000020000.00%0119000.0001000231
13Urho VaakanainenEdmonton OilersD1000-100311120.00%52222.330000000002000.00%002000.0000000000
Team Total or Average262313667-471951041212838716810.95%95392414.981115263421711248610643.10%6524582010.34413100201915
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael HutchinsonEdmonton Oilers21100.9332.021190046038000.000020010
Team Total or Average21100.9332.021190046038000.000020010


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alex BiegaGrizzlies (EDM)D341987-04-04No195 Lbs5 ft10NoNoNo3UFAPro & Farm2,500,000$0$0$No
Anders LindbackGrizzlies (EDM)G331987-10-12No215 Lbs6 ft6NoNoNo1UFAPro & Farm800,000$0$0$No
Egor YakovlevGrizzlies (EDM)D301990-10-12No190 Lbs6 ft0NoNoNo3UFAPro & Farm800,000$0$0$No
Gemel SmithGrizzlies (EDM)C281993-04-16No203 Lbs5 ft10NoNoNo1UFAPro & Farm750,000$0$0$No
J.C. BeaudinGrizzlies (EDM)C251996-03-25Yes196 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$0$0$No
Jake CheliosGrizzlies (EDM)D301990-10-12No185 Lbs6 ft2NoNoNo3UFAPro & Farm800,000$0$0$No
Jakob Forsbacka-KarlssonGrizzlies (EDM)C251995-10-12No184 Lbs6 ft1NoNoNo2RFAPro & Farm750,000$0$0$No
Jean-Francois BerubeGrizzlies (EDM)G301990-10-12No177 Lbs6 ft1NoNoNo3UFAPro & Farm5,000,000$0$0$No
Joshua JacobsGrizzlies (EDM)D261995-02-15Yes200 Lbs6 ft2NoNoNo4RFAPro & Farm750,000$0$0$No
Lias AnderssonGrizzlies (EDM)C231997-10-13No185 Lbs6 ft1NoNoNo3RFAPro & Farm900,000$0$0$No
MacKenzie MacEachernGrizzlies (EDM)LW281993-03-09No193 Lbs6 ft2NoNoNo1UFAPro & Farm750,000$0$0$No
Nikita GusevGrizzlies (EDM)LW301991-07-08No163 Lbs5 ft9NoNoNo3UFAPro & Farm3,000,000$0$0$No
Patrik BerglundGrizzlies (EDM)LW331987-10-12No219 Lbs6 ft4NoNoNo3UFAPro & Farm800,000$0$0$No
Ryan KuffnerGrizzlies (EDM)RW251995-10-12Yes194 Lbs6 ft1NoNoNo4RFAPro & Farm750,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1428.57193 Lbs6 ft12.641,364,286$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
135122
2Patrik BerglundRyan Kuffner30122
325122
4Patrik Berglund10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
135122
2Joshua Jacobs30122
3Jake Chelios25122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
155122
2Patrik BerglundRyan Kuffner45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Joshua Jacobs45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
155122
2Patrik BerglundRyan Kuffner45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Joshua Jacobs45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
15512255122
245122Joshua Jacobs45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
155122
2Patrik BerglundRyan Kuffner45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Joshua Jacobs45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , Ryan Kuffner, Ryan Kuffner
Extra Defensemen
Normal PowerPlayPenalty Kill
Jake Chelios, , Jake Chelios,
Penalty Shots
, , Patrik Berglund, Ryan Kuffner,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracudas2110000028-6000000000002110000028-620.5002460025455410272153664583237103127600.00%8187.50%037174250.00%39375951.78%37771252.95%1310962894331638322
2Bayou11000000211000000000001100000021121.000224002545541024215366458323915713100.00%10100.00%037174250.00%39375951.78%37771252.95%1310962894331638322
3Chiwawa2010001069-31010000037-41000001032120.500610160025455410432153664583272212517400.00%5180.00%037174250.00%39375951.78%37771252.95%1310962894331638322
4CoolFm40400000512-72020000025-32020000037-400.0005101510254554108221536645832793124725120.00%12466.67%037174250.00%39375951.78%37771252.95%1310962894331638322
5Farmers1010000037-41010000037-40000000000000.000347002545541021215366458323596012000.00%5340.00%037174250.00%39375951.78%37771252.95%1310962894331638322
6Goons11000000624110000006240000000000021.00061016002545541033215366458323284127342.86%20100.00%037174250.00%39375951.78%37771252.95%1310962894331638322
7Hunters11000000211000000000001100000021121.000246002545541020215366458324015432150.00%20100.00%037174250.00%39375951.78%37771252.95%1310962894331638322
8Husky21100000660211000006600000000000020.5006121800254554105121536645832501717258337.50%60100.00%037174250.00%39375951.78%37771252.95%1310962894331638322
9Marlies2020000037-42020000037-40000000000000.0003690025455410352153664583234929323266.67%7357.14%137174250.00%39375951.78%37771252.95%1310962894331638322
10Outlaws2110000046-21010000014-31100000032120.50047110025455410392153664583248163422900.00%7185.71%037174250.00%39375951.78%37771252.95%1310962894331638322
11Predateurs321000001293211000006511100000064240.667122335002545541082215366458328427903417529.41%10370.00%037174250.00%39375951.78%37771252.95%1310962894331638322
12Raptors20002000532100010003211000100021141.000591400254554103421536645832431928258112.50%4175.00%037174250.00%39375951.78%37771252.95%1310962894331638322
13Rockets22000000642110000004311100000021141.0006101600254554103321536645832361221315120.00%8187.50%037174250.00%39375951.78%37771252.95%1310962894331638322
14Saguenéens2110000048-4110000002111010000027-520.5004711002545541046215366458325282422400.00%7442.86%037174250.00%39375951.78%37771252.95%1310962894331638322
15Scorpions21001000743110000003121000100043141.000713200025455410432153664583267201725200.00%6266.67%037174250.00%39375951.78%37771252.95%1310962894331638322
16Smirnoff Ice4300000116115220000007342100000198170.87516294500254554101162153664583210634125511436.36%60100.00%137174250.00%39375951.78%37771252.95%1310962894331638322
17Snowbirds1010000023-11010000023-10000000000000.0002460025455410212153664583223449300.00%20100.00%037174250.00%39375951.78%37771252.95%1310962894331638322
18Spartans11000000413110000004130000000000021.0004711002545541017215366458321542155120.00%10100.00%037174250.00%39375951.78%37771252.95%1310962894331638322
19Thugs201010005501010000012-11000100043120.5005101500254554104921536645832331013168112.50%5180.00%237174250.00%39375951.78%37771252.95%1310962894331638322
20TigersCats2010001058-3000000000002010001058-320.500581300254554104321536645832361719276116.67%7442.86%037174250.00%39375951.78%37771252.95%1310962894331638322
Total47192004121130142-1224111201000706912388031216073-13520.553130235365202545541010512153664583211633545365911403021.43%1393773.38%537174250.00%39375951.78%37771252.95%1310962894331638322
22Twins211000007521010000034-11100000041320.500714210025455410412153664583247624227228.57%12375.00%037174250.00%39375951.78%37771252.95%1310962894331638322
23Vandals2110000059-4110000004311010000016-520.500591400254554104221536645832591819255120.00%7357.14%037174250.00%39375951.78%37771252.95%1310962894331638322
24Vipers1000010012-1000000000001000010012-110.500123002545541019215366458322356103133.33%30100.00%037174250.00%39375951.78%37771252.95%1310962894331638322
25Warriors1010000035-2000000000001010000035-200.00034710254554102921536645832355253133.33%10100.00%037174250.00%39375951.78%37771252.95%1310962894331638322
26Wolves1010000023-1000000000001010000023-100.0002460025455410152153664583217616106116.67%3166.67%037174250.00%39375951.78%37771252.95%1310962894331638322
27Xpress11000000734110000007340000000000021.0007132000254554104621536645832218425200.00%2150.00%137174250.00%39375951.78%37771252.95%1310962894331638322
_Since Last GM Reset47192004121130142-1224111201000706912388031216073-13520.553130235365202545541010512153664583211633545365911403021.43%1393773.38%537174250.00%39375951.78%37771252.95%1310962894331638322
_Vs Conference21910000116266-412660000038362934000112430-6210.50062110172202545541050921536645832504165196299521732.69%581672.41%337174250.00%39375951.78%37771252.95%1310962894331638322
_Vs Division1255000113642-6633000001720-3622000111922-3130.5423661971025455410277215366458322828614316228932.14%341167.65%237174250.00%39375951.78%37771252.95%1310962894331638322

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4752OTL11302353651051116335453659120
All Games
GPWLOTWOTL SOWSOLGFGA
4719204121130142
Home Games
GPWLOTWOTL SOWSOLGFGA
24111210007069
Visitor Games
GPWLOTWOTL SOWSOLGFGA
238831216073
Last 10 Games
WLOTWOTL SOWSOL
243100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1403021.43%1393773.38%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
2153664583225455410
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
37174250.00%39375951.78%37771252.95%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1310962894331638322


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2023-04-0510Grizzlies2CoolFm4LBoxScore
2 - 2023-04-0619Farmers7Grizzlies3LBoxScore
4 - 2023-04-0844Grizzlies0Barracudas7LBoxScore
5 - 2023-04-0955Grizzlies4TigersCats3WXXBoxScore
6 - 2023-04-1065Husky2Grizzlies3WBoxScore
7 - 2023-04-1188CoolFm2Grizzlies1LBoxScore
9 - 2023-04-13105Smirnoff Ice2Grizzlies4WBoxScore
11 - 2023-04-15124Grizzlies3Warriors5LBoxScore
12 - 2023-04-16139Xpress3Grizzlies7WBoxScore
14 - 2023-04-18152Grizzlies5Smirnoff Ice3WBoxScore
15 - 2023-04-19164Grizzlies2Bayou1WBoxScore
16 - 2023-04-20178Predateurs3Grizzlies5WBoxScore
17 - 2023-04-21195Spartans1Grizzlies4WBoxScore
19 - 2023-04-23218Grizzlies2Rockets1WBoxScore
20 - 2023-04-24228Rockets3Grizzlies4WBoxScore
21 - 2023-04-25244Grizzlies2Hunters1WBoxScore
23 - 2023-04-27262Grizzlies3Outlaws2WBoxScore
24 - 2023-04-28274Saguenéens1Grizzlies2WBoxScore
26 - 2023-04-30294Marlies5Grizzlies2LBoxScore
27 - 2023-05-01306Grizzlies1TigersCats5LBoxScore
28 - 2023-05-02320Thugs2Grizzlies1LBoxScore
29 - 2023-05-03342Grizzlies4Twins1WBoxScore
30 - 2023-05-04357Smirnoff Ice1Grizzlies3WBoxScore
31 - 2023-05-05365Grizzlies6Predateurs4WBoxScore
32 - 2023-05-06387Outlaws4Grizzlies1LBoxScore
34 - 2023-05-08408Predateurs2Grizzlies1LBoxScore
35 - 2023-05-09423Grizzlies3Chiwawa2WXXBoxScore
36 - 2023-05-10437Goons2Grizzlies6WBoxScore
38 - 2023-05-12453Grizzlies2Saguenéens7LBoxScore
39 - 2023-05-13468Husky4Grizzlies3LBoxScore
40 - 2023-05-14483Grizzlies1CoolFm3LBoxScore
41 - 2023-05-15500CoolFm3Grizzlies1LBoxScore
43 - 2023-05-17516Grizzlies2Barracudas1WBoxScore
44 - 2023-05-18531Twins4Grizzlies3LBoxScore
45 - 2023-05-19546Grizzlies2Raptors1WXBoxScore
46 - 2023-05-20558Grizzlies4Smirnoff Ice5LXXBoxScore
48 - 2023-05-22570Chiwawa7Grizzlies3LBoxScore
49 - 2023-05-23590Grizzlies4Thugs3WXBoxScore
50 - 2023-05-24603Vandals3Grizzlies4WBoxScore
52 - 2023-05-26620Grizzlies2Wolves3LBoxScore
53 - 2023-05-27635Snowbirds3Grizzlies2LBoxScore
54 - 2023-05-28648Grizzlies4Scorpions3WXBoxScore
55 - 2023-05-29663Raptors2Grizzlies3WXBoxScore
57 - 2023-05-31687Grizzlies1Vandals6LBoxScore
58 - 2023-06-01695Marlies2Grizzlies1LBoxScore
59 - 2023-06-02718Scorpions1Grizzlies3WBoxScore
60 - 2023-06-03730Grizzlies1Vipers2LXBoxScore
62 - 2023-06-05748Rockets-Grizzlies-
64 - 2023-06-07764Grizzlies-Husky-
65 - 2023-06-08778Marmots-Grizzlies-
66 - 2023-06-09789Grizzlies-Goons-
67 - 2023-06-10810Warriors-Grizzlies-
69 - 2023-06-12828Grizzlies-Spartans-
70 - 2023-06-13841Bayou-Grizzlies-
71 - 2023-06-14857Grizzlies-Hunters-
73 - 2023-06-16873Grizzlies-Bayou-
74 - 2023-06-17882Supreme-Grizzlies-
75 - 2023-06-18901Barracudas-Grizzlies-
76 - 2023-06-19919Grizzlies-Xpress-
77 - 2023-06-20927Grizzlies-Igloos-
78 - 2023-06-21944Warriors-Grizzlies-
80 - 2023-06-23966Farmers-Grizzlies-
82 - 2023-06-25992Grizzlies-Farmers-
83 - 2023-06-261000Hunters-Grizzlies-
84 - 2023-06-271020Grizzlies-Farmers-
85 - 2023-06-281027Bandits-Grizzlies-
86 - 2023-06-291043Grizzlies-Marlies-
87 - 2023-06-301060Vipers-Grizzlies-
89 - 2023-07-021083Spartans-Grizzlies-
Trade Deadline --- Trades can’t be done after this day is simulated!
90 - 2023-07-031094Grizzlies-Warriors-
91 - 2023-07-041110Grizzlies-Marmots-
93 - 2023-07-061120Grizzlies-Supreme-
94 - 2023-07-071131Wolves-Grizzlies-
96 - 2023-07-091151Igloos-Grizzlies-
98 - 2023-07-111172Grizzlies-Rockets-
99 - 2023-07-121185Marmots-Grizzlies-
101 - 2023-07-141199Grizzlies-Bandits-
102 - 2023-07-151201Grizzlies-Marmots-
104 - 2023-07-171222Grizzlies-Snowbirds-
105 - 2023-07-181229TigersCats-Grizzlies-
108 - 2023-07-211251TigersCats-Grizzlies-
109 - 2023-07-221269Grizzlies-Marlies-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price6525
Attendance27,51616,067
Attendance PCT57.33%66.95%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
17 1816 - 60.53% 109,511$2,628,258$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,552,526$ 1,910,000$ 1,880,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 725,484$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,861,683$ 50 30,721$ 1,536,050$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
3282353605411302302041171902201149159-1041181703210153143107030248678803511211248241554789395728228775943714282487128.63%1884675.53%6891150459.24%798144155.38%775130559.39%156388119926861383691
348236300591132131654117170241016616154119130350115515507232154586620711151297244667182692433226467774812662477229.15%2608168.85%6857158953.93%808151653.30%755137055.11%1841117018136561297659
418231330565232531213411614024411631521141151903211162160290325557882326211913415245758391093757237379277010302035929.06%2688369.03%10876153557.07%830158052.53%748133855.90%1783111818406701353679
4276233405923222252-3038121803410123136-133811160251399116-177222239761914497195718854246607674919896546979211894021.16%2626674.81%4562118247.55%599130845.80%538112547.82%1970138815205731119552
4547192004121130142-1224111201000706912388031216073-1352130235365202545541010512153664583211633545365911403021.43%1393773.38%537174250.00%39375951.78%37771252.95%1310962894331638322
Total Regular Season3691441530242911813001324-2418573800101462671677-618471730141556629647-1835613002220352089258471536471025424403655404319910076323631885236102727226.48%111731371.98%313557655254.29%3428660451.91%3193585054.58%847055228062291957922905