Association Québécoise de Hockey Simulé - Husky 

Husky

GP: 31 | W: 13 | L: 14 | OTL: 4 | P: 30
GF: 107 | GA: 116 | PP%: 28.92% | PK%: 77.23%
GM : René-Karl Poirier | Morale : 90 | Team Overall : 59
Next Games #482 vs Wolves
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Yakov TreninX100.00964878817076935830536380678678090680
2Kasperi KapanenX100.00804588866568806630646964708677090680
3Yegor SharangovichX98.00524589836872916130596484848475090670
4Parker Kelly (R)X98.00995477776153664830445179508371090610
5Jansen Harkins (R)X96.00624580796854405430476165668573090590
6Dmitrij JaskinX97.00504595737850404530405055509077090540
7Alexandre Texier (A)X99.00504595786150404530405055508471090530
8Nikolay GoldobinX100.00504595766250404530405055508875090530
Scratches
1Christian FischerX100.00824588797674975930546379698678090680
2Sean Couturier (C)X100.00504595747850404530405055509178090540
3Michael SgarbossaX72.58504595785650404530405055509178090530
4Filip ChlapikX100.00504595776750404530405055508673090530
5MacKenzie MacEachernX100.00504595776750404530405055508976090530
6Jayden Halbgewachs (R)X100.00504595804050404530405055508673090520
7Semyon Der-Arguchintsev (R)X100.00504595794850404530405055508269090520
8Oliver Ekman-LarssonX100.00704584866584656230705564699185090690
9Austin Strand (R)X100.00514592747452404530405058508674090580
10Jake GardinerX92.00504595756650404530405055509380090570
11Xavier OuelletX100.00504595766050404530405055509077090570
12Ryan MurphyX100.00504595785150404530405055509077090560
13Robbie RussoX93.00504595775550404530405055509077090560
TEAM AVERAGE97.3859469178645652493045546156877609058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Kaapo Kahkonen100.0072718891707572757070708681090660
2Mads Sogaard (R)100.0071537689737071707370708273090630
Scratches
1Chris Driedger100.0070404090656565656565658780090590
TEAM AVERAGE100.007155689069706970696868857809063
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jeff Blashill65656565847872CAN5021,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Kasperi KapanenHusky (MTL)RW31182341-124154149117326615.38%1662920.32781518572134700240.72%1673018101.3001000421
2Yakov TreninHusky (MTL)LW31162238-83206854116326613.79%1466521.46651124641014681032.89%762929201.1401000312
3Yegor SharangovichHusky (MTL)LW3116112701403554106255615.09%1558818.9723512482026561336.59%412523000.9211000153
4Jansen HarkinsHusky (MTL)LW31151025-3175364094296715.96%1552717.03011290003305149.25%673620010.9511001240
5Christian FischerHusky (MTL)RW1281220580202730122826.67%1125521.261563260000290031.08%74812001.5700000321
6Nikolay GoldobinHusky (MTL)RW3141418-120303230111313.33%748315.591564300001220141.27%361210000.7500000013
7Michael SgarbossaHusky (MTL)C2261117-106025312821121.43%1040018.2123510460002232035.73%347411000.8500000013
8Alexandre TexierHusky (MTL)LW315611620223136111313.89%1443814.14000012000132039.66%179917000.5000000020
9Oliver Ekman-LarssonHusky (MTL)D131101131603120281493.57%1432324.85134633022233000.00%2819000.6800000011
10Parker KellyHusky (MTL)RW315510-126042426416277.81%1052416.911125300002290022.22%18918000.3801000001
11Jake GardinerHusky (MTL)D31099-6751223256110.00%3769422.39000253011078000.00%0223000.2600100000
12Dmitrij JaskinHusky (MTL)RW31369-35524302061515.00%650416.28000117000010141.80%122812000.3600001001
13Robbie RussoHusky (MTL)D31167-15121022262111114.76%4865521.13011141011067000.00%3732000.2100011000
14Ryan MurphyHusky (MTL)D3006610032815750.00%2555618.56000132000049000.00%1120000.2200000000
15Sean CouturierHusky (MTL)C6112-2205972714.29%212320.5210149000030031.40%12114000.3200000000
16Austin StrandHusky (MTL)D701114051011250.00%717124.48011014000012000.00%006000.1200000000
17Xavier OuelletHusky (MTL)D11011-500101911460.00%1124822.6300002600003700100.00%1118000.0800000000
18Filip ChlapikHusky (MTL)C11011001320050.00%01919.4500002000000044.44%2700001.0300000000
Team Total or Average412100154254-491943043252876122241613.14%262780918.952236589355555102561711838.21%1607180292310.6525113131916
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Kaapo KahkonenHusky (MTL)28111240.8693.81160600102779401200.8005283300
2Mads SogaardHusky (MTL)72200.9083.12269001415376000.0000328111
Team Total or Average35131440.8763.71187500116932477200.80053131411


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alexandre TexierHusky (MTL)LW241999-09-13No186 Lbs6 ft1NoNoNo4RFAPro & Farm1,200,000$0$0$No
Austin StrandHusky (MTL)D261997-02-17Yes215 Lbs6 ft3NoNoNo3RFAPro & Farm850,000$0$0$No
Chris DriedgerHusky (MTL)G291994-05-18No208 Lbs6 ft4NoNoNo4UFAPro & Farm850,000$0$0$No
Christian FischerHusky (MTL)RW261997-04-15No212 Lbs6 ft2NoNoNo3RFAPro & Farm1,025,000$0$0$No
Dmitrij JaskinHusky (MTL)RW301993-03-23No216 Lbs6 ft2NoNoNo3UFAPro & Farm800,000$0$0$No
Filip ChlapikHusky (MTL)C261997-06-03No194 Lbs6 ft2NoNoNo3RFAPro & Farm750,000$0$0$No
Jake GardinerHusky (MTL)D331990-07-04No203 Lbs6 ft2NoNoNo2UFAPro & Farm900,000$0$0$No
Jansen HarkinsHusky (MTL)LW261997-05-23Yes197 Lbs6 ft2NoNoNo1RFAPro & Farm925,000$0$0$No
Jayden HalbgewachsHusky (MTL)LW261997-03-22Yes160 Lbs5 ft8NoNoNo2RFAPro & Farm750,000$0$0$No
Kaapo KahkonenHusky (MTL)G271996-08-16No217 Lbs6 ft2NoNoNo1RFAPro & Farm1,500,000$0$0$No
Kasperi KapanenHusky (MTL)RW271996-07-23No194 Lbs6 ft1NoNoNo1RFAPro & Farm1,750,000$0$0$No
MacKenzie MacEachernHusky (MTL)LW291994-03-09No193 Lbs6 ft2NoNoNo4UFAPro & Farm800,000$0$0$No
Mads SogaardHusky (MTL)G222000-12-13Yes196 Lbs6 ft7NoNoNo3RFAPro & Farm1,025,000$0$0$No
Michael Sgarbossa (Out of Payroll)Husky (MTL)C311992-07-25No179 Lbs6 ft0NoNoNo2UFAPro & Farm800,000$0$0$Yes
Nikolay GoldobinHusky (MTL)RW271995-10-07No196 Lbs5 ft11NoNoNo1RFAPro & Farm800,000$0$0$No
Oliver Ekman-LarssonHusky (MTL)D321991-07-17No200 Lbs6 ft2NoNoNo4UFAPro & Farm2,500,000$0$0$No
Parker KellyHusky (MTL)RW241999-05-14Yes190 Lbs6 ft0NoNoNo3RFAPro & Farm900,000$0$0$No
Robbie RussoHusky (MTL)D291993-10-12No189 Lbs6 ft0NoNoNo2UFAPro & Farm800,000$0$0$No
Ryan MurphyHusky (MTL)D291993-10-12No185 Lbs5 ft11NoNoNo2UFAPro & Farm800,000$0$0$No
Sean CouturierHusky (MTL)C301992-12-07No211 Lbs6 ft3NoNoNo1UFAPro & Farm7,000,000$0$0$No
Semyon Der-ArguchintsevHusky (MTL)C232000-09-15Yes173 Lbs5 ft10NoNoNo4RFAPro & Farm800,000$0$0$No
Xavier OuelletHusky (MTL)D301993-07-29No199 Lbs6 ft0NoNoNo2UFAPro & Farm900,000$0$0$No
Yakov TreninHusky (MTL)LW261997-01-13No201 Lbs6 ft2NoNoNo3RFAPro & Farm1,500,000$0$0$No
Yegor SharangovichHusky (MTL)LW251998-06-06No196 Lbs6 ft2NoNoNo1RFAPro & Farm2,000,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2427.38196 Lbs6 ft12.461,330,208$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Yakov TreninNikolay GoldobinKasperi Kapanen35122
2Yegor SharangovichAlexandre TexierParker Kelly30122
3Jansen HarkinsDmitrij Jaskin25122
4Alexandre TexierKasperi KapanenNikolay Goldobin10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
135122
230122
325122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Yakov TreninNikolay GoldobinKasperi Kapanen55122
2Yegor SharangovichAlexandre TexierParker Kelly45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
155122
245122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Kasperi KapanenYakov Trenin55122
2Yegor SharangovichParker Kelly45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
155122
245122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Kasperi Kapanen5512255122
2Yakov Trenin4512245122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Kasperi KapanenYakov Trenin55122
2Yegor SharangovichParker Kelly45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
155122
245122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Yakov TreninNikolay GoldobinKasperi Kapanen
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Yakov TreninNikolay GoldobinKasperi Kapanen
Extra Forwards
Normal PowerPlayPenalty Kill
Jansen Harkins, Dmitrij Jaskin, Nikolay GoldobinJansen Harkins, Dmitrij JaskinNikolay Goldobin
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
Kasperi Kapanen, Yakov Trenin, Yegor Sharangovich, Parker Kelly, Jansen Harkins
Goalie
#1 : Kaapo Kahkonen, #2 : Mads Sogaard


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bandits312000001115-420200000614-81100000051420.3331118290018354968319528829925943039657114.29%12650.00%120754737.84%25363739.72%17846138.61%531251764282582295
2Barracudas1010000014-3000000000001010000014-300.0001120018354962419528829925266295120.00%110.00%020754737.84%25363739.72%17846138.61%531251764282582295
3Chiwawa10000010321100000103210000000000021.00033600183549627195288299253613018100.00%000.00%020754737.84%25363739.72%17846138.61%531251764282582295
4CoolFm20101000550000000000002010100055020.50051015001835496571952882992553198365240.00%4175.00%020754737.84%25363739.72%17846138.61%531251764282582295
5Farmers1010000035-21010000035-20000000000000.000358001835496251952882992532118183133.33%4175.00%020754737.84%25363739.72%17846138.61%531251764282582295
6Goons210010001257110000008261000100043141.0001219310018354965619528829925763018416350.00%9277.78%020754737.84%25363739.72%17846138.61%531251764282582295
7Hunters31100100880210001006511010000023-130.5008122000183549669195288299256225323013215.38%16193.75%120754737.84%25363739.72%17846138.61%531251764282582295
8Igloos411011001313011000000312301011001012-250.62513203300183549680195288299251142219556233.33%70100.00%220754737.84%25363739.72%17846138.61%531251764282582295
9Marmots20100100710-31000010056-11010000024-210.250712190018354965619528829925592726284125.00%13376.92%020754737.84%25363739.72%17846138.61%531251764282582295
10Predateurs1010000013-2000000000001010000013-200.000123001835496251952882992531106153133.33%30100.00%020754737.84%25363739.72%17846138.61%531251764282582295
11Smirnoff Ice11000000312110000003120000000000021.000369001835496191952882992526124184125.00%20100.00%020754737.84%25363739.72%17846138.61%531251764282582295
12Snowbirds2110000010911010000046-21100000063320.5001017270018354965619528829925701725363133.33%10460.00%020754737.84%25363739.72%17846138.61%531251764282582295
13TigersCats11000000514110000005140000000000021.000591400183549632195288299253188154250.00%40100.00%120754737.84%25363739.72%17846138.61%531251764282582295
Total3181404410107116-91565003105758-11629041005058-8300.48410717628300183549680219528829925932309243501832428.92%1012377.23%520754737.84%25363739.72%17846138.61%531251764282582295
15Vandals1010000037-41010000037-40000000000000.000347001835496201952882992538107132150.00%10100.00%020754737.84%25363739.72%17846138.61%531251764282582295
16Vipers21100000710-3110000005411010000026-420.500713200018354965519528829925572325326116.67%7442.86%020754737.84%25363739.72%17846138.61%531251764282582295
17Wolves1000010034-11000010034-10000000000010.500358001835496271952882992528116104125.00%30100.00%020754737.84%25363739.72%17846138.61%531251764282582295
18Xpress302010001214-200000000000302010001214-220.3331220320018354969119528829925993510627342.86%50100.00%020754737.84%25363739.72%17846138.61%531251764282582295
_Since Last GM Reset3181404410107116-91565003105758-11629041005058-8300.48410717628300183549680219528829925932309243501832428.92%1012377.23%520754737.84%25363739.72%17846138.61%531251764282582295
_Vs Conference22690430079772105300200393541216041004042-2230.5237913121000183549656819528829925646219172368591830.51%761481.58%520754737.84%25363739.72%17846138.61%531251764282582295
_Vs Division17470420061601632001002322111150410038380180.529619916000183549643619528829925498161126289441329.55%531081.13%420754737.84%25363739.72%17846138.61%531251764282582295

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3130OTL110717628380293230924350100
All Games
GPWLOTWOTL SOWSOLGFGA
318144410107116
Home Games
GPWLOTWOTL SOWSOLGFGA
156503105758
Visitor Games
GPWLOTWOTL SOWSOLGFGA
162941005058
Last 10 Games
WLOTWOTL SOWSOL
331210
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
832428.92%1012377.23%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
195288299251835496
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
20754737.84%25363739.72%17846138.61%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
531251764282582295


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2024-04-067Bandits10Husky3LBoxScore
2 - 2024-04-0713Husky4Xpress3WXBoxScore
4 - 2024-04-0936Husky4Igloos3WXBoxScore
5 - 2024-04-1044Husky3Xpress5LBoxScore
7 - 2024-04-1260Wolves4Husky3LXBoxScore
8 - 2024-04-1376Husky3CoolFm4LBoxScore
9 - 2024-04-1488Bandits4Husky3LBoxScore
11 - 2024-04-16114Smirnoff Ice1Husky3WBoxScore
13 - 2024-04-18131Hunters3Husky2LXBoxScore
15 - 2024-04-20152Husky2Hunters3LBoxScore
16 - 2024-04-21162Husky4Goons3WXBoxScore
17 - 2024-04-22171Goons2Husky8WBoxScore
18 - 2024-04-23189Husky2Igloos4LBoxScore
20 - 2024-04-25207Igloos1Husky3WBoxScore
21 - 2024-04-26224TigersCats1Husky5WBoxScore
22 - 2024-04-27232Husky5Bandits1WBoxScore
24 - 2024-04-29254Husky2Marmots4LBoxScore
25 - 2024-04-30265Husky2Vipers6LBoxScore
26 - 2024-05-01276Snowbirds6Husky4LBoxScore
28 - 2024-05-03294Husky1Barracudas4LBoxScore
29 - 2024-05-04306Farmers5Husky3LBoxScore
31 - 2024-05-06328Vandals7Husky3LBoxScore
32 - 2024-05-07341Husky5Xpress6LBoxScore
34 - 2024-05-09359Marmots6Husky5LXBoxScore
35 - 2024-05-10377Chiwawa2Husky3WXXBoxScore
37 - 2024-05-12394Husky1Predateurs3LBoxScore
38 - 2024-05-13404Husky2CoolFm1WXBoxScore
40 - 2024-05-15418Vipers4Husky5WBoxScore
42 - 2024-05-17441Husky6Snowbirds3WBoxScore
43 - 2024-05-18449Hunters2Husky4WBoxScore
44 - 2024-05-19469Husky4Igloos5LXBoxScore
45 - 2024-05-20482Wolves-Husky-
46 - 2024-05-21492Husky-Chiwawa-
47 - 2024-05-22505Husky-Farmers-
49 - 2024-05-24525Spartans-Husky-
51 - 2024-05-26544Husky-Twins-
52 - 2024-05-27554Scorpions-Husky-
54 - 2024-05-29579Bandits-Husky-
55 - 2024-05-30589Husky-Thugs-
57 - 2024-06-01602Husky-Bandits-
58 - 2024-06-02616Predateurs-Husky-
60 - 2024-06-04639Supreme-Husky-
62 - 2024-06-06653Husky-Outlaws-
63 - 2024-06-07666Husky-Warriors-
64 - 2024-06-08678Marlies-Husky-
66 - 2024-06-10697Twins-Husky-
67 - 2024-06-11712Husky-Marlies-
68 - 2024-06-12731CoolFm-Husky-
69 - 2024-06-13741Husky-Bayou-
70 - 2024-06-14752Husky-Spartans-
72 - 2024-06-16770Thugs-Husky-
73 - 2024-06-17793Grizzlies-Husky-
74 - 2024-06-18804Husky-Smirnoff Ice-
75 - 2024-06-19819Husky-Wolves-
77 - 2024-06-21831Xpress-Husky-
78 - 2024-06-22854Husky-Grizzlies-
79 - 2024-06-23865Husky-TigersCats-
81 - 2024-06-25875Raptors-Husky-
83 - 2024-06-27894Saguenéens-Husky-
85 - 2024-06-29917Rockets-Husky-
87 - 2024-07-01938CoolFm-Husky-
88 - 2024-07-02953Husky-Scorpions-
Trade Deadline --- Trades can’t be done after this day is simulated!
90 - 2024-07-04968Husky-Supreme-
91 - 2024-07-05983Barracudas-Husky-
93 - 2024-07-071002Husky-Raptors-
94 - 2024-07-081013Outlaws-Husky-
95 - 2024-07-091029Husky-Hunters-
96 - 2024-07-101041Husky-Goons-
98 - 2024-07-121052Xpress-Husky-
100 - 2024-07-141074Husky-Rockets-
101 - 2024-07-151080Warriors-Husky-
103 - 2024-07-171098Husky-Vandals-
104 - 2024-07-181103Husky-Saguenéens-
105 - 2024-07-191116Igloos-Husky-
108 - 2024-07-221145Bayou-Husky-
111 - 2024-07-251168Goons-Husky-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance29,80314,924
Attendance PCT99.34%99.49%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
23 2982 - 99.39% 101,357$1,520,358$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,622,576$ 3,112,500$ 3,112,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,233,176$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,331,216$ 69 36,394$ 2,511,186$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
4582303803335272306-3441161901221138152-1441141902114134154-208027246073212511001159226856577791144234077159812402384217.65%2527769.44%4638147743.20%697151146.13%582133843.50%1826120219056421233607
46824032045102972811641181802210150150041221402300147131169529751881522521201205214149279983122223475576211682386426.89%2606375.77%8715137352.08%748152249.15%674129352.13%1913129218046311225607
473181404410107116-91565003105758-11629041005058-83010717628300183549680219528829925932309243501832428.92%1012377.23%520754737.84%25363739.72%17846138.61%531251764282582295
Total Regular Season19578840111255676703-2797404203741345360-1598384208514331343-12205676115418303412125528420521112521864204191550618351603290955913023.26%61316373.41%171560339745.92%1698367046.27%1434309246.38%427127464474155630411510